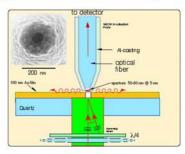

Plasmonic Routes to Nanophotonics

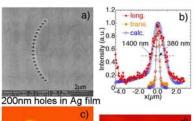
Vitalii Vlasko-Vlasov^a, Leilei Yin^a, John Pearson^a, Jon Hiller^a, Jiong Hua^a, Ulrich Welp^a, Stephen Gray^b, Dennis Brown^c and Clyde Kimball^c

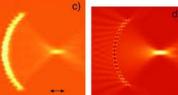

^a Materials Science Division and Chemistry Division^b, Argonne National Laboratory
^c Department of Physics, Northern Illinois University

- · Surface Plasmon Polaritons (SPP) in conducting materials:
 - -confine light energy in a nanoscale layer
 - -strongly enhanced light fields: non-linear effects
- · Combine power of optics and miniaturization of electronics
- Photonic microchips for advanced information processing and sensing -increased speed and sensitivity, reduced power losses
- Understanding light / plasmon effects in nanostructures
 - -development of physical background for design and application of SPP nanosources, nanowaveguides, and active elements

 k_x depends on ϵ_D -> chem/bio sensing

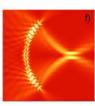
Local generation and manipulation of plasmon beams in nano-structured metal/dielectric films

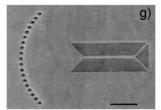


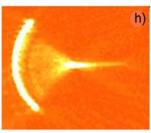

Near-Field Scanning Optical Microscopy

Nanoholes and slits (100-200nm) effective SPP sources

Rational design of coherent SPP sources:


- sub-wavelength focusing
- launching into 250-nm Ag guide
- building blocks for nano-photonics



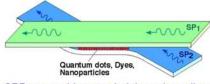


Polarization dependent SPP focusing

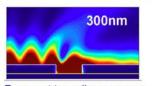
Dipolar model calculations

(g) SEM: focusing array and nanoguide FIB patterned in Ag(50nm) (bright) / Cr(100nm) (dark) bi-layer; 2-µm scale bar. (h) NSOM image of SPP intensity

Future Directions: Functional materials & optical circuits


Incorporation of optically active elements

- -quantum dots, resonant cavities, nanoparticles, dyes
- -bio-molecules (sensing),


Novel nanocomposites with engineered optical properties

- -plasmon resonances, dispersion relations
- -low-loss metal-dielectric hybrids
- -left-handed meta-materials
- -nanoporous templates for tailoring optical hybrids:

Periodic patterns $p << \lambda \rightarrow$ New optical modes

SPP waveguides coupled through nonlinear optical material: plasmonic switch

FDTD

Resonant tunneling across a 300-nm gap in a 100-nm Ag-film

L.Yin et al., Appl. Phys. Lett. 85, 467 (2004); Nano Lett. 5, 1399 (2005)

